R25 SECTION 6 - Natural Language Processing in Radiology

Papers discussed in this Section 6 Podcast:

  • H. Salehinejad, J. Barfett, S. Valaee, E. Colak, A. Mnatzakanian, and T. Dowdell. Interpretation of mammogram and chest radiograph reports using deep neural networks-preliminary results. arXiv preprint arXiv:1708.09254, 2017.
  • Hassanpour S, Langlotz CP. Predicting High Imaging Utilization Based on Initial Radiology Reports: A Feasibility Study of Machine Learning. Acad Radiol 2016; 23 (01) 84-89.
  • Pons E., Braun L.M.M., Hunink M.G.M. et al. (2016) Natural language processing in radiology: a systematic review. Radiology, 279, 329–343.
  • Trivedi, H., Mesterhazy, J., Laguna, B. et al. Automatic Determination of the Need for Intravenous Contrast in Musculoskeletal MRI Examinations Using IBM Watson’s Natural Language Processing Algorithm. J Digit Imaging (2017). https://doi.org/10.1007/s10278-017-0021-3

Podcast Contents

  • Why These Papers
  • NLP Review
    • Defining NLP
    • NLP Pipeline in Figure 1
    • Radlex
    • Evaluation Measures - F1
    • Types
      • Diagnostic Surveillance
      • Cohort Building
      • Query based case retrieval
      • Quality Assessment in radiologic practice
      • Communication of critical results
      • Clinical Support Services
    • Resources in Table 2
    • Operational Barriers
    • Future Research Needs
  • IV Contrast
    • Why Chosen?
    • Notes
      • Processing Time Discussion
      • Error analysis
      • Cloud Service
      • Passive Workflow integration.
  • Predicting High Imaging Utilization
    • Why Chosen?
    • Notes
      • SVM usage.
      • Document-Feature Matrix
      • Overfit
  • Interpretation of Mammograms
    • Why Chosen?
    • Notes
      • Bi-directional CNN
      • Passive Workflow Integration
      • Preprocessing
  • Why Deep Learning
  • Questions